3.6 Homomorphism

Definition 3.27 Homomorphism

Let G be a group with respect to \otimes, and let G' be a group with respect to \oplus. A *homomorphism* from G to G' is a mapping $\phi: G \rightarrow G'$ such that

$$\phi(x \otimes y) = \phi(x) \oplus \phi(y)$$

for all x and y in G.

Endomorphism

If $G = G'$, the homomorphism ϕ is an **endomorphism**.

Epimorphism

A homomorphism ϕ is called an epimorphism if this function is onto.

Monomorphism

If ϕ is one-to-one, then it is called a monomorphism.

Example 1 Define $\phi: (\mathbb{Z},+) \rightarrow (\mathbb{Z}_n,\ast)$ by $\phi(x) = [x]$. Then for all x and y in \mathbb{Z},

$$\phi(x + y) = [x + y] = [x] + [y] = \phi(x) + \phi(y).$$

Thus this function is a homomorphism.

Endo? Epi? Mono?

Example 2 Define $\phi: G \rightarrow \widetilde{G}$ by $\phi(x) = \tilde{e}$ for all $x \in G$. Here \tilde{e} is the identity element of \widetilde{G}.

Then for all x and y in G,

$$\phi(x) \phi(y) = \tilde{e} \tilde{e} = \tilde{e} = \phi(x) \phi(y).$$

Thus this function is a homomorphism.

Endo? Epi? Mono?
Example Consider the additive group \(\mathbb{Z} \) and the multiplicative group \(G = \{1, -1, -i, i\} \) and define \(\phi: \mathbb{Z} \to G \) by \(\phi(n) = i^n \). Prove that \(\phi \) is a homomorphism. Is this function epi and mono?

Theorem 3.28 Images of Identities and Inverses

Let \(\phi \) be a homomorphism from the group \(G \) to the group \(G' \). If \(e \) denotes the identity in \(G \), and \(e' \) denotes the identity in \(G' \), then

a. \(\phi(e) = e' \), and

b. \(\phi(x^{-1}) = [\phi(x)]^{-1} \) for all \(x \) in \(G \).

Definition. If there exists an epimorphism from the group \(G \) to the group \(\tilde{G} \), then \(\tilde{G} \) is called a homomorphic image.

Definition 3.29 Kernel

Let \(\phi \) be a homomorphism from the group \(G \) to the group \(G' \). The kernel of \(\phi \) is the set

\[
\ker \phi = \{ x \in G \mid \phi(x) = e' \}
\]

where \(e' \) denotes the identity in \(G' \).

Example 5 To illustrate Definition 3.29, we list the kernels of the homomorphisms from the preceding examples in this section.

The kernel of the homomorphism \(\phi: \mathbb{Z} \to \mathbb{Z}_n \) defined by \(\phi(x) = [x] \) in Example 1 is given by

\[
\ker \phi = \{ x \in \mathbb{Z} \mid x = kn \text{ for some } k \in \mathbb{Z} \},
\]

since \(\phi(x) = [x] = [0] \) if and only if \(x \) is a multiple of \(n \).

The homomorphism \(\phi: \mathbb{Z} \to G \) in Example 3 defined by

\[
\phi(n) = \begin{cases}
1 & \text{if } n \text{ is even} \\
-1 & \text{if } n \text{ is odd}
\end{cases}
\]

has the set \(\mathbb{E} \) of all even integers as its kernel, since 1 is the identity in \(G \).

For \(\phi: \mathbb{Z} \to \mathbb{Z} \) defined by \(\phi(x) = 5x \) in Example 4, we have \(\ker \phi = \{0\} \), since \(5x = 0 \) if and only if \(x = 0 \). This kernel is an extreme case since part a of Theorem 3.28 assures us that the identity is always an element of the kernel.

At the other extreme, the homomorphism \(\phi: G \to G' \) defined in Example 2 by \(\phi(x) = e' \) for all \(x \in G \) has \(\ker \phi = G \).